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We have measured the rate of transfer of unesterified cholesterol from rat erythrocyte to triolein emulsions 
modeling nascent triglyceride-rich lipoproteins. Emulsions (mean diameter -130 nm) were prepared with 
low cholesterol content (less than 2%) and various phosphatidylcholines that resulted in fluid (egg yolk 
phosphatidylcholine, dimyristoyl phosphatidylcholine) at transition (dipalmitoyl phosphatidylcholine) and 
solid (distearoyl phosphatidylcholine) surfaces at 37 ° C. Emulsions were incubated for O, 20, 60, and 
180 min with rat erythrocytes. Incubation mixtures initially contained approximately equal masses of 
phospholipid in the emulsion surfaces and the outer layer of plasma membrane of rat erythrocytes. There 
was a gradual and significant increase (P < 0.05) in the percent mass of unesterified cholesterol and 
consequently unesterified cholesterol to phospholipid molar ratio in the surface phase of three reisolated 
emulsions with time: dimyristoyl phosphatidylcholine-low cholesterol- > > egg yolk phosphatidylcholine- 
low cholesterol- > dipalmitoyl phosphatidylcholine-low cholesterol-triolein. There was no significant 
change in the composition of the surface phase of distearoyl phosphatidylcholine-low cholesterol-triolein 
emulsions. Therefore, transfer of unesterified cholesterol to the surface phase of emulsions during incubation 
with intact rat erythrocytes at 370 C in the absence of transfer proteins and plasma proteins is attributable 
to the degree of surface fluidity of emulsions. (J. Nutr. Biochem. 4:630-634, 1993.) 
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Introduction 

Phospholipid-stabilized triglyceride-rich protein-free 
emulsions, such as Intralipid (Kabivitrum, Stockholm, 
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Sweden), have been employed extensively in human 
parenteral nutrition 1-4 and in metabolic studies as mod- 
els for plasma and lymph chylomicrons and very low 
density lipoproteins and their remnants. 5-~2 

In a series of in vivo studies in rats it was demon- 
strated that the metabolic fate of model emulsions de- 
pends on the phospholipid composition and the 
cholesterol content of the surface monolayer.13-15 Fur- 
thermore,  the physical state of lipid molecules at the 
lipid-water interface and the surface pressure of the 
surface monolayer play important roles in the binding 
of apolipoproteins to the surface 11,15 and in the lipolysis 
of emulsions by hepatic or lipoprotein lipase. 16.17 

The asymmetric distribution of lipids in cell mem- 
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branes has been well documented.  'S Earlier studies have 
demonstrated that the surface components  of erythro- 
cytes, mainly unesterified cholesterol, exchange and 
transfer to circulating plasma lipoproteins.19-~ 

In this investigation, well-characterized protein- 
free triolein emulsions containing low unesterified 
cholesterol concentrations and various phosphatidyl- 
eholines resulting in fluid (egg yolk phosphatidyl- 
cholines, EYPC; dimyristoyl phosphatidylcholine, 
DMPC) at chain melting transition (dipalmitoyl phos- 
phatidylcholine, DPPC)  and solid (distearoyl phospha- 
tidylcholine, DSPC) surfaces at 37 ° C 7-9,11,14,15,17,23 were 
incubated for up to 3 hr at 37 ° C with intact rat erythro- 
cytes and the change in total lipid and phase (surface 
and oil) compositions of the reisolated emulsions was 
determined.  

Methods and materials 

Materials 
EYPC was from Avanti Polar Lipids (Birmingham, AL 
USA). DMPC, DPPC, DSPC, and cholesterol were pur- 
chased from Sigma Chemical Co. (St. Louis, MO USA) and 
triolein was from Nu Chek Prep (Elysian, MN USA). All 
lipids were >99% pure by thin layer chromatography and 
were used without further purification. Glycerol tri[9,10(n)- 
aH]oleate (TO, triolein) was purchased from Amersham Corp. 
(Arlington Heights, IL USA) and its purity (>99%) was 
confirmed by thin layer chromatography and 13-liquid scintilla- 
tion spectrometry (Rackbeta 1217, Pharmacia LKB Nuclear, 
Inc., Gaithersburg, MD USA). 

Preparation of rat erythrocytes 
Male Sprague-Dawley rats (325-375 g) were purchased from 
Taconic Farms (Germantown, NY USA) and were main- 
tained on Purina Rat Chow (Ralston Purina, St. Louis, MO 
USA) with free access to drinking water. Blood was collected 
from fed rats under ether anesthesia with citrate-dextrose 
solution as anticoagulant. Erythrocytes were sedimented by 
centrifugation at 3000 rpm for 15 rain in a Beckman J6 centri- 
fuge (Beckman Instruments, Inc., Palo Alto, CA USA) at 10 ° 
C. Plasma and buffy coat were removed. Packed erythrocytes 
were resuspended and washed three times with 10 volumes 
of 150 mM NaCl. The lipid composition of rat erythrocytes 
was: unesterified cholesterol (UC) 1.05 ± 0.03 mg/mL and 
phospholipids (PL) 2.77 ± 0.08 mg/mL (mean _+ SEM; 
n = 16). Therefore, the UC/PL molar ratio was 0.76 _+ 0.02, 
assuming a PL molecular weight of 775. 

Preparation and characterization of emulsions 
Emulsions were prepared by sonication above their respective 
phosphatidylcholine acyl chain melting temperatures. '',13,~,~ 
Briefly, glycerol tri[9,10(n)-3H]oleate (40 rag; specific activity 
0.5 p.Ci/ixmol TO), cholesterol (0.75 rag), and one of the 
phospholipids (either EYPC, DMPC, DSPC, or DPPC; 9.25 
rag) dissolved in chloroform were mixed in glass vials. Chloro- 
form was evaporated under a stream of N2 and lipid films 
were further dried down in a vacuum dessicator at 4* C for 
about 18 hr. Ten mL of 150 mM aqueous NaC1 (pH 7.2) was 
added to the vials at appropriate temperatures (EYPC 0 ° C; 
DMPC 25-30* C; DPPC 45-50* C; DSPC 60-65 ° C) to rehy- 
drate the dry lipid films. The lipid mixtures were sonicated 
at the above temperatures for 11 min at ~30% of maximum 
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power (Branson Sonifier Model, W-350, Branson Sonic 
Power Co., Danbury, CT USA; 1 cm probe tip). The soni- 
cated lipid mixtures were transferred into polyaUomer ultra- 
centrifuge tubes, overlayered with 1.5-2.0 mL double distilled 
water, and floated by ultracentrifugation in a SW41 rotor 
(Beckman Instruments) for 11 min at 23,000 rpm and 25 ° C. 
The floated emulsions were collected by tube slicing and were 
used within 1 hr after preparation. A 10 IxL aliquot of each 
emulsion was fixed with 2% OsO4 and negatively stained with 
2% phosphotungstate. 24 Particle size was determined from 
electron micrographs of negatively stained emulsions. Specific 
activity of 3H triolein was determined on aliquots of nonex- 
tracted emulsions. Mass of PL as phosphatidylcholine was 
quickly determined by a modified phospholipase D assay 25 to 
estimate the mass of emulsion needed per tube in incubation 
experiments. Initially, equal amounts of PL were present in 
surfaces of emulsions and in the outer layer of lipid bilayers 
of rat erythrocytes. It was assumed that 60% of PC is in the 
outer lipid layer of rat erythrocytes. 26 

Incubation of emulsions and rat erythrocytes 
In each experiment all four sets of emulsions were incubated 
with 25% rat erythrocytes and 75% (vol/vol) Krebs-Henseleit 
bicarbonate buffer (KHB) for 0, 20, 60, and 180 min at 37 ° 
C. KHB (pH 7.4) contained 118 mM NaC1, 25 mM NaHCO3, 
4.8 mM KC1, 2.5 mM CaCI2, 1.2 mM MgSO4, 1.2 mM 
KH2POa, and 8.8 mM D-glucose. 

Racks containing siliconized glass tubes in duplicate for 
each time point were placed in a shaking water bath at 37 ° 
C. First, 1000 p.L containing 25% red blood cells (-400 p,g 
PC) and 75% KHB (vol/vol) were added to each tube. Next, 
a model emulsion containing 300-400 ~g PC (2.3-3.0 mg total 
lipid) was added to each tube in 50-160 ixL, and the tubes 
were covered with Parafilm (VWR Scientific, Boston, MA). 
The specific activity of 3H triolein in the emulsions was 490, 
690, and 910 cpm/~g per assay tube in the three experiments, 
respectively. Recovery of 3H was between 96-108%. 

Aliquots of the original emulsions (0 time) and the incuba- 
tion tubes from 20, 60, and 180 min time points were placed 
on ice and extracted for lipid analysis. 27 Blank tubes contained 
25% erythrocytes and 75% (vol/vol) KHB and were incubated 
simultaneously with tubes containing emulsions. 

At each time point emulsions were refloated by centrifuga- 
tion at 3,000 rpm for 15 min at 10. C. Emulsions were trans- 
ferred into glass tubes and were extracted with methanol/ 
chloroform (2:1, VOl/vol). 27 

Chemical analyses 
Analytical assays were performed on lipids extracted into the 
chloroform layer. 28 PL was quantitated either by the method 
of Bartlett 29 or a phospholipase D assay. 25 Triglycerides (TG) 
were measured by a semienzymatic method (Sigma Chemical 
Co., Kit #320-UV). Total and unesterified cholesterol were 
measured by a modified cholesterol oxidase method, a° Eryth- 
rocyte lipids were extracted by the method of Rose and 
Oklander. 31 

Morphology of emulsions 
Particle size (diameter) was measured from electron micro- 
graphs of negatively stained emulsions. ~ 

Phase analysis of emulsions 
Lipid compositions of the surface and the oil phases of the 
emulsions were calculated from phase diagrams of emul- 
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sions 7-9 using a computer program ("Lipoprotein Phase Anal- 
ysis Program") developed by Miller and Small. 22,32 

Statistical analysis 
Data are shown (Table 1 and Figure 1) as means of three 
experiments __+ SEM unless otherwise indicated. Statistical 
significance was determined by one-way analysis of covariance 
(ANOCOVA ONEWAY) that combined one-way analysis of 
variance with linear regression on a single dependent variable. 
Significance was set at P < 0.05. Best-fit lines and ANO- 
COVA ONEWAY were determined by the RS1 computer 
program (BBN Software Products, Cambridge, MA USA). 

Results and discussion 

The lipid compositions (weight percent) of the original 
emulsions (0 min) are shown in Table 1. All four 
types of emulsions were constructed to have a low 
cholesterol content (less than 10%) on the particle 
surfaces, which are similar to that of nascent TG-rich 
particles like chylomicrons. 9,22 The initial UC to PL 
molar ratios of the surface phases of the four emulsions 
were calculated from "Lipoprotein Phase Diagram 
Analysis" computer program 22 and were similar be- 

tween 0.16 and 0.22.  Emulsion particles appeared 
spherical by negative staining electron microscopy. 
The mean diameters of emulsions ( ___ S.D.) from nega- 
tively stained preparations in one experiment were, 
in nm, EYPC-LoC: 104 +43 (n=390); DMPC-LoC: 
79 +41 (n=398); DPPC-LoC: 78 +32 (n=423): and 
DSPC-LoC: 106 _+35 (n=341). 

There was a linear and significant (P < 0.05) 
increase in the percent mass of UC of emulsions made 
with DMPC (from 1.2 to 3.2), EYPC (from 1.1 to 
1.8), and DPPC (from 1.3 to t.9) from direct chemical 
measurements (Table 1). At 37 ° C, DMPC and EYPC 
emulsions have fluid surfaces while the DPPC emul- 
sion is at the transition temperature between solid 
and fluid. However, the total composition of DSPC- 
LoC-triolein emulsions with solid surface at 37 ° C due 
to saturated acyl chains remained statistically unaltered 
during the 3-hr incubation with intact rat erythrocytes 
(Table 1). To further investigate the changes in the 
composition of the oil and surface phases of the 
reisolated emulsions the percent lipid compositions 
were plotted on triangular coordinates (not shown) 2~ 
and phase compositions were also analyzed by a 
computer program 2~- (Table 1). The distribution coeffi- 

Table 1 Total and phase composition (weight percent) of triolein emulsions before and after incubations with intact rat erythrocytes 

Emulsions Total composition (%) Oil phase (%) Surface phase (%) 

Incubation time TG UC PL TG UC TG UC PL 

DMPC-LoC 
0 min 88.3 -+ 1.2 1.0 _+ 0.2 10.8 -+ 1.0 99.3 - 0.1 0.30 _+ 0.04 2.8 ± 0.02 6.6 -+ 0.8 90.6 ± 0.7 

20 rain 88.7 - 1.1 1.2 _+ 0.2 10.1 4- 0.9 99.6 _+ 0.05 0.40 _+ 0.05 2.7 -+ 0.03 8.7 + 1.2 88.6 -+ 1.1 
60 min d 87.8 -+ 1.5 1.8 -+ 0.5 I0.4 _ 1.1 99.5 ± 0.1 0.53 _+ 0.10 2.6 ± 0.07 11.8 _+ 2.3 85.5 - 2.2 

180 min 84.9 -+ 1.9 3.2 _+ 0.8 12.0 --- 1.1 99.2 --_ 0.1 0.80 ± 0.11 2.5 -+ 0.07 17.6 _+ 2.3 79.9 +_ 2.3 

EYPC-LoC 
0 min 89.3 + 12  1.1 _+ 0.2 9.6 -+ 0.9 99.8 -+ 0.1 0.37 _+ 0.06 2.8 -+ 0.04 8.1 _+ 1.3 89.2 +_ 1.2 

20min  87.6 +- 2.3 1.3 _+ 0.2 11,1 + 2.1 99.6 -+ 0.03 0.40 _+ 0.03 2.7 -+ 0.02 8.8 + 0.8 88.4 -- 0.8 
60 min 89.1 + 1.4 1.4 _ 0.2 9.6 + 1.2 99.6 -+ 0.04 0.45 _+ 0,04 2.7 ± 0.03 10.0 ± 1.0 87.4 _+ 0.9 

180 min 89.1 _+ 1.1 1.8 ± 0.3 9.1 + 1.0 99.4 +- 0.08 0.61 + 0,08 2.6 ± 0.05 13.4 ± 1.8 84.0 ± 1.8 

DPPC-LoC 
0 min 86.7 -- 0,3 1,3 -+ 0.1 12,1 _~ 0.3 99.6 -- 0.01 0.36 + 0.02 2.8 -+ 0.01 7.9 _+ 0.3 89.3 ± 0.3 

20 min 86.6 -+ 0,6 1,4 _+ 0,2 12.0 _+ 0.5 99.7 -+ 0.03 0,39 + 0.04 2.7 -+ 0.03 8.6 _+ 0.9 88.6 ± 0.9 
60 min a 85.8 _+ 0,7 1.6 -+ 0.2 12.6 _+ 0.7 99.6 + 0.04 0.43 + 0.04 2.7 -+ 0.03 9.5 _+ 0.8 87.8 ± 0.8 

180 min . 86.2 -+ 0.8 1.9 --_ 0.4 11.9 _~ 0.5 99.5 -+ 0.1 0.53 + 0.09 2.6 _+ 0.1 11.6 _+ 1.8 85.8 ± 1.8 

DSPC-LoC 
0 min 86.7 _+ 1.2 1.3 + 0.3 12.0 + 0.8 99.6 +- 0.04 0,40 _ 0.04 2.7 _+ 0.03 8.8 _+ 0.9 88.5 + 0.9 

20 min 85.9 -+ 0.8 1.4 _+ 0.3 12.6 + 0.6 99.6 + 0.06 0.39 +_ 0.06 2.7 + 0.04 8.6 -+ 1.4 88.6 = 1.4 
60 min d 85.8 -- 0.6 1.4 _+ 0,3 12.7 -+ 0.4 99.6 + 0.08 0.39 _+ 0.08 2.7 + 0.06 8.5 _+ 1.8 88.8 +- 1.8 

180 min 86.0 -+ 0.7 1.6 -+ 0.3 12.4 _+ 0.5 99.6 -+ 0,06 0.45 _+ 0.06 2.7 -+ 0.04 9.8 _+ 1.3 87,5 --- 1.2 

Comparison of slopes of lines: 
DMPC versus EYPC N.S. P < 0.05 N.S. N.S. N.S. P < 0.05 P = 0.053 P = 0.053 
DMPC versus DPPC N.S. P < 0.05 N.S. N.S. P < 0.05 P < 0.05 P = 0.010 P = 0.010 
DMPC versus DSPC N.S. P < 0.01 N.S. P < 0.05 P < 0.05 P < 0.01 P = 0.002 P = 0.002 

The four sets of [3H] triolein emulsions EYPC-LoC, DMPC-LoC, DPPC-LoC, and DSPC-LoC were prepared as described in Methods and 
materials. To each assay tube 1000 ILL of 25% intact rat erythrocytes ( - 7 0 0  p,g PL and 250 ~g UC) and 75% (vol/vol) KHB (pH 7.4) and I 
model emulsion (containing -300--400 i~g PL) were added. Tubes were incubated at 37 ° C in a shaking water bath. At designated time 
points tubes were removed and erythrocytes were pelleted. Emulsions were reisolated by centrifugation and lipids were extracted with 
methanol/chloroform (2:1, vol/vol). TG, PL, and UC in chloroform layers were quantified as described. Total compositions (weight percent) 
are from direct chemical measurements. Phase (oil and surface) compositions were calculated by a computer program "Lipoprotein Phase 
Diagram Analysis". 2z32 Data are the means of three experiments - SEM unless indicated otherwise. 
aMean of two experiments --- SEM. Statistical analysis was by ANOCOVA ONEWAY that compared slopes of lines. 
NS., not significant. 
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Figure 1 The changes in UC to PL molar ratio in the surface phase 
of reisolated emulsions following incubations with intact rat erythro- 
cytes [25%] and KHB [75%, vol/vol] for 0, 20, 60, and 180 min at 
37 ° C. The data points drawn are the means of three separate 
experiments + one SEM. Data points were calculated from Table 1 
by the computer program "Lipoprotein Phase Diagram Analysis". z2.2a 
The best-fit line was drawn by RS1 computer program. Comparison 
of the slopes of lines by ANOCOVA ONEWAY are: DMPC versus 
EYPC, P < 0.050; DMPC versus DPPC, P < 0.010; DMPC versus 
DSPC, P < 0.002. 

cient of cholesterol between surface and core K,/c used 
here was K¢c=22.0. This value was derived from 
data on EYPC-Iow cholesterol-triolein emulsions. 7,22 
Distribution coefficients for other emulsions were as- 
sumed to be similar. 

There was a linear and significant increase in the 
percent mass of UC in the surface phase of three reiso- 
lated emulsions with time: DMPC-LoC from 6.6 to 17.6 
(P < 0.001), EYPC-LoC from 8.1 to 13.4 (P < 0.005), 
and DPPC-LoC from 7.5 to 11.6 (P < 0.05) (Table 1). 
Consequently there was a parallel decrease (percent 
mass) in PL content of the surface phase of these emul- 
sions (Table 1). These changes resulted in concomitant 
significant increases in the UC/PL molar ratio of the 
surface phase of the three reisolated emulsions with 
time: DMPC-LoC (P < 0.001), EYPC-LoC (P < 0.01), 
and DPPC-LoC (P < 0.05) (Figure la-c). However, 
there was no significant change in lipid composition of 
the surface phase of the reisolated DSPC-LoC emul- 
sions (Table 1 and Figure ld). 

In conclusion, there was a gradual, significant in- 
crease in the percent UC of the surface phase of protein 
free phospholipid-triolein emulsions with low choles- 
terol content of similar size (diameter <130 nm) and 
overall composition. However, the rate of transfer of 
UC from erythrocytes depends on the phospholipid acyl 
chains and their consequent fluidity. The rate of transfer 
was fastest and most significant to the fluid DMPC sur- 
face, followed by the fluid EYPC surface, slower to 
DPPC (at its melting transition), and slowest (or per- 
haps absent) to the solid DSPC surface. 

Earlier studies from this laboratory 13,~4 identified the 
liver as the central organ of uptake of these emulsions 
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with the various phospholipid surfaces in the intact rat. 
Our studies continue (unpublished results) to dissect 
the metabolic fate and the consequent cellular distribu- 
tion of those emulsions in the perfused rat liver system. 
Because we employ rat erythrocytes as oxygen carri- 
ers, 2s this in vitro incubation study with the emulsions 
and red cells will enable us to evaluate the possible 
contribution of red blood cell lipids to compositional 
changes of emulsion during the course of liver perfu- 
sions up to 3 hr. 
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